วงจรไฟฟ้า

วงจรไฟฟ้า คือ การนำเอาแหล่งจ่ายไฟฟ้ามาจ่ายแรงดันและกระแสให้กับโหลด โดยผ่านลวดตัวนำ และใช้สวิตช์ในการเปิดปิดวงจรเพื่อตัดหรือต่อกระแสไฟฟ้าที่จ่ายให้กับโหลด ในทางปฏิบัติจะมีฟิวส์ในวงจรเพื่อป้องกันปัญหาข้อผิดพลาดที่จะเกิดกับวงจร และอุปกรณ์  เช่น โหลดเกิน หรือไฟฟ้าลัดวงจร วงจรไฟฟ้าเบื้องต้นที่ควรศึกษามีอยู่ 3 ลักษณะคือ วงจรอนุกรม, วงจรขนานและวงจรผสม

องค์ประกอบของวงจรไฟฟ้า
1. แหล่งจ่ายไฟฟ้า คือ อุปกรณ์ที่ทำหน้าที่ในการจ่ายแรงดัน และกระแสให้กับวงจร เช่น แบตเตอรี่, ถ่านไฟฉาย, เครื่องจ่ายไฟ, ไดนาโม และเจนเนอร์เรเตอร์ เป็นต้น

วงจรไฟฟ้า

2. ลวดตัวนำ คือ อุปกรณ์ที่นำมาต่อกับแหล่งจ่ายไฟฟ้า จากขั้วหนึ่งไปยังอีกขั้วหนึ่ง เพื่อจ่ายแรงดันและกระแสไฟฟ้าให้กับลวดตัวนำที่นำกระแสไฟฟ้ได้ดีที่สุด คือ เงิน แต่เนื่องจากเงินมีราคาแพงมาก จึงนิยมใช้ทองแดง ซึ่งมีคุณสมบัติในการนำไฟฟ้าได้ดีพอสมควรและราคาไม่แพงมากนัก นอกจากนี้ยังยังมีโลหะชนิดอื่นๆ ที่สามารถนำไฟฟ้าได้ เช่น ทองคำ, ดีบุก,เหล็ก,  อลูมิเนียม,  นิเกิล ฯลฯ เป็นต้น

วงจรไฟฟ้า

3. โหลดหรือภาระทางไฟฟ้า คือ อุปกรณ์ทางไฟฟ้าและอิเล็กทรอนิกส์ ที่นำมาต่อในวงจร เพื่อใช้งาน เช่นตู้เย็น, โทรทัศน์, พัดลม, เครื่องปรับอากาศ, เตารีด, หลอดไฟ, ตัวต้านทาน เป็นต้น

4. สวิตช์ คือ อุปกรณ์ที่ใช้ในการปิดหรือเปิดวงจร ในกรณีที่เปิดวงจรก็จะทำให้ไม่มีกระแสไฟฟ้าจ่ายให้กับโหลด ในทางปฏิบัติการต่อวงจรไฟฟ้า จะต้องต่อสวิตช์เข้าไปในวงจร เพื่อทำหน้าที่ตัดต่อและควบคุมการไหลของกระแสไฟฟ้า

5. ฟิวส์ คือ อุปกรณ์ที่ทำหน้าที่ในการป้องกันไม่ให้วงจรไฟฟ้าหรืออุปกรณ์ได้รับความเสียหาย เนื่องจากการทำงานผิดปกติของวงจร เช่น โหลดเกิน หรือ เกิดการลัดวงจร เมื่อเกิดการผิดปกติฟิวส์จะทำหน้าที่ในการเปิดวงจรที่เรียกว่า ฟิวส์ขาด นั่นเอง

วงจรไฟฟ้า

การต่อวงจรไฟฟ้าสามารถแบ่งวิธีการต่อได้ 3 แบบ คือ

1. วงจรอนุกรม คือ ปลายของเครื่องใช้ไฟฟ้าตัวที่ 1 นำไปต่อกับต้นของเครื่องใช้ไฟฟ้าตัวที่ 2 และต่อเรียงกันไปเรื่อยๆจนหมด แล้วนำไปต่อเข้ากับแหล่งกำเนิด การต่อวงจรแบบอนุกรมจะมีทางเดินของกระแสไฟฟ้าได้ทางเดียวเท่านั้น ถ้าเกิดเครื่องใช้ไฟฟ้าตัวใดตัวหนึ่งเปิดวงจรหรือขาด จะทำให้วงจรทั้งหมดไม่ทำงาน

คุณสมบัติที่สำคัญของวงจรอนุกรม

1. กระแสไฟฟ้าจะไหลผ่านเท่ากันตลอดวงจร
2. แรงดันไฟฟ้าตกคร่อมส่วนต่างๆ ของวงจร เมื่อนำมารวมกันแล้วจะเท่ากับแรงดันไฟฟ้าที่แหล่งกำเนิด
3. ความต้านทานรวมของวงจร จะมีค่าเท่ากับผลรวมของความต้านทานแต่ละตัวในวงจรรวมกัน

วงจรไฟฟ้า

การคำนวนค่าความต้านทาน

R =  R1 + R2+R3+R4+ …….. + Rn

R=  ค่าความต้านทานรวมของวงจร

Rn =  ค่าความต้านทานตัวสุดท้ายของวงจร

วงจรไฟฟ้า

การวัดค่าความต้านทาน

  1. นำมัลติมิเตอร์ตั้งย่านวัดโอห์ม ในกรณีที่เป็นมิเตอร์แบบเข็มให้ทำการปรับค่าศูนย์ (Zero Ohm Adjust) ก่อนที่จะดำเนินการขั้นตอนต่อไป
  2. นำสายวัดของมัลติมิเตอร์เส้นที่หนึ่งสัมผัสกับขาของตัวต้านทานด้านหนึ่ง
  3. นำสายวัดของมัลติมิเตอร์เส้นที่สองสัมผัสกับขาของตัวต้านทานอีกด้านหนึ่ง
  4. อ่านค่าความต้านทาน

 วงจรไฟฟ้า 

การวัดค่าความต้านทานรวมของวงจร

วงจรไฟฟ้า

การวัดค่าแรงดันตกคร่อม

วงจรไฟฟ้า

การวัดค่ากระแสไฟฟ้าในวงจรอนุกรม

วงจรไฟฟ้า

2. วงจรขนาน เป็นการนำเอาต้นของเครื่องใช้ไฟฟ้าทุกๆ ตัวมาต่อรวมกัน และต่อเข้ากับแหล่งกำเนิดที่จุดหนึ่ง นำปลายสายของทุกๆ ตัวมาต่อรวมกันและนำไปต่อกับแหล่งกำเนิดอีกจุดหนึ่งที่เหลือ ซึ่งเมื่อเครื่องใช้ไฟฟ้าแต่ละอันต่อเรียบร้อยแล้วจะกลายเป็นวงจรย่อย กระแสไฟฟ้าที่ไหลจะสามารถไหลได้หลายทางขึ้นอยู่กับตัวของเครื่องใช้ไฟฟ้าที่นำมาต่อขนานกัน ถ้าเกิดในวงจรมีเครื่องใช้ไฟฟ้าตัวหนึ่งขาดหรือเปิดวงจร เครื่องใช้ไฟฟ้าที่เหลือก็ยังสามารถทำงานได้ ในบ้านเรือนที่อยู่อาศัยปัจจุบันจะเป็นการต่อวงจรแบบนี้ทั้งสิ้น

คุณสมบัติที่สำคัญของวงจรขนาน

1. กระแสไฟฟ้ารวมของวงจรขนาน จะมีค่าเท่ากับกระแสไฟฟ้าย่อยที่ไหลในแต่ละสาขาของวงจรรวมกัน
2. แรงดันไฟฟ้าตกคร่อมส่วนต่างๆ ของวงจร จะเท่ากับแรงดันไฟฟ้าที่แหล่งกำเนิด
3. ความต้านทานรวมของวงจร จะมีค่าน้อยกว่าความต้านทานตัวที่น้อยที่สุดที่ต่ออยู่ในวงจร

วงจรไฟฟ้า

การคำนวนค่าความต้านทาน

R =  R// R2 // R3 // R4 // …….. // Rn

วงจรไฟฟ้า

 

R =  ค่าความต้านทานรวมของวงจร

Rn =  ค่าความต้านทานตัวสุดท้ายของวงจร

// = เครื่องหมายแสดงการต่อแบบขนาน

วงจรไฟฟ้า

วงจรไฟฟ้า

การวัดค่ากระแสไฟฟ้าในวงจรขนาน

  1. นำมัลติมิเตอร์ตั้งย่านวัดกระแส (mA) ให้มีค่าสูงไว้ก่อน
  2. นำสายด้านไฟบวกของมัลติมิเตอร์ต่ออนุกรมเข้ากับด้านไฟบวกของแหล่งจ่ายไฟ
  3. นำสายด้านไฟลบของมัลติมิเตอร์ต่ออนุกรมเข้ากับด้านไฟลบของแหล่งจ่ายไฟ
  4. อ่านค่ากระแสที่ไหลผ่านในวงจร

วงจรไฟฟ้า

3. วงจรผสม เป็นวงจรที่นำเอาวิธีการต่อแบบอนุกรม และวิธีการต่อแบบขนานมารวมให้เป็นวงจรเดียวกัน ซึ่งสามารถแบ่งตามลักษณะของการต่อได้       2 ลักษณะดังนี้

3.1 วงจรผสมแบบอนุกรม-ขนาน เป็นการนำเครื่องใช้ไฟฟ้าหรือโหลดไปต่อกันอย่างอนุกรมก่อน แล้วจึงนำไปต่อกันแบบขนานอีกครั้งหนึ่ง

 

3.2 วงจรผสมแบบขนาน-อนุกรม เป็นการนำเครื่องใช้ไฟฟ้าหรือโหลดไปต่อกันอย่างขนานก่อน แล้วจึงนำไปต่อกันแบบอนุกรมอีกครั้งหนึ่ง

คุณสมบัติที่สำคัญของวงจรผสม

เป็นการนำเอาคุณสมบัติของวงจรอนุกรม และคุณสมบัติของวงจรขนานมารวมกัน ซึ่งหมายความว่าถ้าตำแหน่งที่มีการต่อแบบอนุกรม ก็เอาคุณสมบัติ      ของวงจรการต่ออนุกรมมาพิจารณา ตำแหน่งใดที่มีการต่อแบบขนาน ก็เอาคุณสมบัติของวงจรการต่อขนานมาพิจารณาไปทีละขั้นตอน

วงจรไฟฟ้า

การคำนวนค่าความต้านทาน

ใช้วิธีพิจารณาวงจรก่อน ในกรณีที่ต่อแบบอนุกรมจะนำค่าความต้านทานมาบวกกัน ในกรณีที่วงจรต่อแบบขนานจะใช้สูตรขนานในการคิดคำนวน ดูซับซ้อนไปสักหน่อย แต่คำนวนแบบเป็นลำดับของรูปวงจร ดังตัวอย่างต่อไปนี้

วงจรไฟฟ้า

จากรูปด้านบนจะทำการคิดแบบอนุกรมในส่วนของ RRและ Rก่อน ทำให้รวมวงจรเป็นค่า RT1 ได้ดังภาพด้านล่างค่ะ

วงจรไฟฟ้า

ต่อมาคำนวนค่าความต้านแบบขนานของ RT1 และ R5 จะทำให้รวมวงจรได้เล็กลงไปอีก ได้ค่าของ RT2 มาดังภาพด้านล่างค่ะ

วงจรไฟฟ้า

และขั้นตอนสุดท้ายจากภาพจะเห็นว่าเหลือการหาค่าความต้านทานในแบบอนุกรมได้อย่างเดียว ทำการหาค่าความต้านทานของ R1 RT2 และ R6 ก็จะได้ค่าความค้านทานของวงจรแบบผสมค่ะ

การวัดค่ากระแสไฟฟ้าในวงจรผสม

  1. นำมัลติมิเตอร์ตั้งย่านวัดกระแส (mA) ให้มีค่าสูงไว้ก่อน
  2. นำสายด้านไฟบวกของมัลติมิเตอร์ต่ออนุกรมเข้ากับด้านไฟบวกของแหล่งจ่ายไฟ
  3. นำสายด้านไฟลบของมัลติมิเตอร์ต่ออนุกรมเข้ากับด้านไฟลบของแหล่งจ่ายไฟ
  4. อ่านค่ากระแสที่ไหลผ่านในวงจร

ความแตกต่างของวงจรเปิด-วงจรปิด

1. วงจรเปิด คือ วงจรที่กระแสไฟฟ้าไม่สามารถไหลได้ครบวงจร ซึ่งเป็นผลทำให้เครื่องใช้ไฟฟ้าที่ต่ออยู่ในวงจรไม่สามารถจ่ายพลังงานออกมาได้ สาเหตุของวงจรเปิดอาจเกิดจากสายหลุด สายขาด สายหลวม สวิตซ์ไม่ต่อวงจร หรือเครื่องใช้ไฟฟ้าชำรุด เป็นต้น

2. วงจรปิด คือ วงจรที่กระแสไฟฟ้าไหลได้ครบวงจร ทำให้โหลดหรือเครื่องใช้ไฟฟ้าที่ต่ออยู่ในวงจรนั้นๆ ทำงาน

ความหมายทางไฟฟ้า

1. แรงดันไฟฟ้า หรือแรงเคลื่อนไฟฟ้า หมายถึงแรงที่ดันให้กระแสไฟฟ้าไหลผ่านความต้านทานของวงจรไปได้ ใช้แทนด้วยตัว E มีหน่วยวัดเป็น โวลท์ (V)

2. กระแสไฟฟ้า หมายถึงการเคลื่อนที่ของอิเล็คตรอนอิสระจากอะตอมหนึ่งไปยังอะตอมหนึ่ง จะไหลมากหรือน้อยขึ้นอยู่กับความต้านทานของวงจร ใช้แทนด้วยตัว I มีหน่วยวัดเป็นแอมแปร์ (A)

3. ความต้านทานไฟฟ้า หมายถึงตัวที่ต้านการไหลของกระแสไฟฟ้าให้ไหลในจำนวนจำกัด ซึ่ง อยู่ในรูปของเครื่องใช้ไฟฟ้าทุกชนิด เช่น แผ่นลวดความร้อนของเตารีด หม้อหุงข้าว หลอดไฟฟ้า เป็นต้น เครื่องใช้ไฟฟ้าเหล่านี้ต้านการไหลของกระแสไฟฟ้าให้ไหลในจำนวนจำกัด ใช้แทนด้วยตัว R มีหน่วยวัดเป็นโอห์ม (W )

4. กำลังงานไฟฟ้า หมายถึงอัตราการเปลี่ยนแปลงพลังงาน หรืออัตราการทำงาน ได้จากผลคูณของแรงดันไฟฟ้ากับกระแสไฟฟ้า ใช้แทนด้วยตัว P มีหน่วยวัดเป็นวัตต์ (W)

5. พลังงานไฟฟ้า หมายถึงกำลังไฟฟ้าที่นำไปใช้ในระยะเวลาหนึ่ง มีหน่วยวัดเป็นวัตต์ชั่วโมง (Wh) หรือยูนิต ใช้แทนด้วยตัว W

6. ไฟฟ้าลัดวงจรหรือไฟฟ้าช็อต หมายถึงการที่ไฟฟ้าไหลผ่านจากสายไฟฟ้าเส้นหนึ่งไปยังอีกเส้นหนึ่ง โดยไม่ผ่านเครื่องใช้ไฟฟ้าหรือโหลดใดๆ สาเหตุส่วนใหญ่เกิดจากฉนวนของสายไฟฟ้าชำรุด และมาสัมผัสกันจึงมีความร้อนสูง มีประกายไฟ ทำให้เกิดเพลิงไหม้ได้ถ้าบริเวณนั้นมีวัสดุไวไฟ

7. ไฟฟ้าดูด หมายถึงการที่มีกระแสไฟฟ้าไหลผ่านร่างกาย ซึ่งจะทำให้เกิดอาการกล้ามเนื้อแข็งเกร็ง หัวใจทำงานผิดจังหวะ เต้นอ่อนลงจนหยุดเต้น และเสียชีวิตในที่สุด แต่อย่างไรก็ตามความรุนแรงของอันตรายจะมากหรือน้อยขึ้นอยู่กับปริมาณของกระแส เวลาและเส้นทางที่กระแสไฟฟ้าไหลผ่าน

8. ไฟฟ้ารั่ว หมายถึงสายไฟฟ้าเส้นที่มีไฟจะไหลไปสู่ส่วนที่เป็นโลหะของเครื่องใช้ไฟฟ้าถ้า ไม่มีสายดินก็จะทำให้ได้รับอันตรายแต่ถ้ามีสายดินก็จะทำให้กระแสไฟฟ้าที่ไหล อยู่นั้นไหลลงดินแทน

9. ไฟฟ้าเกิน หมายถึงการใช้ไฟฟ้าเกินกว่าขนาดของอุปกรณ์ตัดตอนทางไฟฟ้า ทำให้มีการปลดวงจรไฟฟ้า อาการนี้สังเกตได้คือจะเกิดหลังจากที่ได้ เปิดใช้ไฟฟ้าสักครู่ หรืออาจนานหลายนาทีจึงจะตรวจสอบเจอ

ขอขอบคุณรูปภาพประกอบเนื้อหา
- http://kpp.ac.th/elearning/elearning3/book-06.html
- http://webhtml.horhook.com

Tags: , , , , , ,